
M. Shirzaei ASU 

 

1 | Final Report, USGS Award Number G18AP00008 

 

 
 

USGS Award Number G18AP00008 
 
 
 
 
 
 
 
 

Time-dependent Model and Underlying Mechanism of 
Creep Rate Variations on the Hayward Fault 

 

 

 

 

 

 

 

 

 

Manoochehr Shirzaei 
Arizona State University, Tempe, Az, 85287 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phone: 4807274193 

Fax: 4809658102 

Duration: 01/01/2018-12/30/2019 

  



M. Shirzaei ASU 

 

2 | Final Report, USGS Award Number G18AP00008 

 

1. Introduction 
Within the earthquake cycle, fault slip comprises seismic and aseismic components, which are 

believed to occur on patches with velocity weakening (VW) and velocity strengthening (VS) 
properties [Dieterich, 1978; Ruina, 1983] (Fig. 1). Understanding, why, when, where, and how aseismic 
slip (or creep) varies on a fault is essential for quantifying earthquake potential [Avouac, 2015]. Creep 
plays a crucial role in the earthquake cycle and can account for more than half of the seismic 
moment budget in the seismogenic zone [Pacheco et al., 1993]. The spatial distributions of creep 
provide information on the extent to which the plate interface is locked [Chlieh et al., 2014; Perfettini et 
al., 2010] and also allows estimating location and size of future earthquakes [Kawasaki et al., 2001]. 
On the other hand, the temporal variation in the extent and rate of creep can be used to determine 
fault frictional properties [Perfettini et al., 2010; Shirzaei et al., 2014; Wallace et al., 2012] and has 
implications for earthquake rupture nucleation, triggering, and termination [Cho et al., 2009]. More 
recently it has been suggested that propagation of creep in the form of slow slip events can precede 
earthquakes, such as the Mw 9.0, 11th March 2011, Tohoku earthquake [Kato et al., 2012; Uchida et al., 
2016], the Mw 8.1, 1st April 2014, Iquique earthquake [Schurr et al., 2014] and the Mw 7.3, 18 April 
2014 Papano earthquake [Radiguet et al., 2016]. These observations suggest that fault creep plays an 
essential role in determining the overall earthquake patterns and that the frictional properties of 
faults are variable spatially. Noteworthy, numerical studies indicate that the extent, size and timing of 
earthquakes are determined by the frictional properties of the fault interface [Kaneko et al., 2010]. 

 
Figure 1. Conceptual model of the earthquake cycle (modified from  Avouac [2015]). It shows how 
the pattern of VW vs. VS zones may vary on fault and how geodetically-derived interseismic 
coupling models gives only a first-order estimate of VW and VS zones. This pattern will also 
determine the patterns of interseismic coupling, seismic ruptures, and afterslip. 

 
Here we measured spatially and temporally variable creep rates on the Hayward Fault 

(HF) and Rodgers Creek Fault (RCF) through kinematic models that integrate geodetic and 
seismic observations. To this end, we have analyzed a large set of SAR data acquired by 
Sentinel-1A/B satellites through an advanced multitemporal interferometric processing. Our 
kinematic model suggests that Hayward fault alone accumulates an equivalent seismic 
moment of 5.2 – 5.5 each year. This estimate for Rodgers Creek Fault is 5.0 – 5.4, while the 
combined system collects a moment at the rate of 5.4 – 5.7 per year. 
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2. Background 
The Hayward fault, extending for about ~70 km onshore of the eastern San Francisco Bay area, 

accommodates ~25% of the relative motion between the Pacific and the Sierra Nevada – Great 
Valley plates [d'Alessio et al., 2005] (Fig. 2A). In the past, this fault has shown distinct phases of 
activity, including large coseismic ruptures (such as a ~Mw 6.8 earthquake in 1868), frequent 
microseismicity, and aseismic creep [Lienkaemper et al., 1991; Toppozada and Borchardt, 1998]. The 
northern extension of the HF, namely Rodgers Creek Fault (Fig. 2A), also hosted moderate 
magnitude ML 5.6 and ML 5.7 in 1969 near the city of Santa Rosa, located on the central part of the 
fault. Within the next 30 years, there is a ~32% likelihood for an Mw 6.7+ earthquake on Hayward-
Rodgers Creek Fault [Field et al., 2015]. Moreover, relying on paleoseismic observations, 1900-yr 
earthquake chronology of the 12 most recent earthquakes, Lienkaemper et al. [2010] determined a 161 
± 65 yr mean recurrence interval and suggested a ~29% (±6%) chance for a large event by 2040. 
Using a frictional model, Savage and Lisowski [1993] relate the surface creep rate to the rate of stress 
accumulation and estimated a strain accumulation rate equivalent to an Mw 6.8 event per century on 
HF alone. Considering a bigger fault rupture area, Lienkaemper and Galehouse [1998] doubled the 
estimate of the HF seismic potential. Also, a recent study based on subsurface imaging and 
geophysical observation suggests that HF and RCF are connected beneath San Pablo Bay, which 
means that this fault has the potential to generate significant earthquakes as large as Mw 7.4 [Watt et 
al., 2016]. 

 Surface creep observed along the full 70-km-long onshore extent of the HF. Given the long-
term slip rate of 9 ± 2 mm/yr, 30-90% of this rate is accommodated by aseismic creep at the surface 
[Lienkaemper et al., 1991; Lienkaemper et al., 1997]. Using GPS data and two ERS interferograms, 
Bürgmann et al. [2000] estimate that ~7 mm/yr creep extends to nearly the base of the seismogenic 
zone along the northern ~20 km and southern ~10 km of the HF. Also, Evans et al. [2012] inverted 
for regional fault slip rates and distributed creep on the HF, relying on a block model approach. 
Their geodetic long-term slip rate estimate is 6.7±0.8 mm/yr, and the creep rates generally increase 
with depth. Using boundary-element models of a stress-free shallow fault driven by slip below the 
seismogenic zone, Simpson et al. [2001] find that creep reaches to depths of 4-12 km on the Hayward 
Fault. However, using a local recurrence-time method based on the size-frequency distribution of 
micro-earthquakes, Wyss [2001] identified a central locked asperity near Hayward. This single locked 
asperity at depth is also suggested to be extending from Berkeley to Fremont by Funning et al. [2005] 
using a more extensive InSAR data set. Moreover, joint inversion of GPS, InSAR and seismic data 
sets using an elastic dislocation model reveals two locked patches between depths of 8–12 km 
located near the southern end of the Hayward fault and between 10 and 30 km distance from Pt. 
Pinole [Schmidt et al., 2005].   

The creeping behavior of the Hayward Fault also varies in time, mainly due to the perturbation 
of the regional stress field induced by seismic events, such as the 1989 Loma Prieta earthquake 
[Lienkaemper et al., 1997]. Following this event, surface creeps on the southern Hayward fault slowed 
down and stopped on one segment, for about six years. In February of 1996, the quiescence was 
ended by a rapid creep event of 25-30 mm followed by a slow recovery phase, and surface creep 
rates are only then approaching the pre-Loma Prieta rate [Lienkaemper et al., 2012]. Using the concept 
of spring-slider and implementing a rate- and state-dependent friction framework through boundary 
element modeling, Kanu and Johnson [2011] suggest that this creep event extended to a depth of ~4 - 
7.5 km. Lienkaemper et al. [2012] report on another slow slip event at km ~20 - 35 from Point Pinole 
following the 2007 Oakland Mw 4.2 earthquake. This event continued for several days and was 
characterized by a logarithmic decay of slip over ~100 days [Lienkaemper et al., 2012].  
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Figure 2. A. The trace of Hayward-Rodgers Creek 
Fault (black line). Trace of other major faults is marked 
in green. The blue and red boxes show the approximate 
ground footprint of the descending and ascending 
frames of Sentinel-1 A/B that will be used in this 
proposed project, respectively. B. Average creep rate 
along the Hayward fault from Shirzaei and Bürgmann 
[2013]. The black dots are microseismicity, and magenta 
circles show the location of repeating events. Colored 
squares show average creep rates from surface 
measurements on top with the same color scale.  

 
To solve for the time-dependent model of creep on the Hayward Fault, Shirzaei and Bürgmann 

[2013] inverted 18 years of surface deformation data (1992 - 2010), obtained by interferometric 
processing of 52 and 50 synthetic aperture radar (SAR) images acquired by the ERS1/2 and Envisat 
satellites, respectively, and surface creep data obtained at 19 alignments and four creepmeter 
stations. Their time-dependent model constrains a zone of high slip deficit (low creep rate) that may 
represent the locked rupture asperity of past and future M≈7 earthquakes (Fig. 2B). They also 
resolve the source areas of the February 1996 and July 2007 slow-slip events. They identify several 
additional temporal variations in creep rate along the Hayward Fault, the most important one being 
a zone of accelerating slip just to the northwest of the major central locked zone. They find that the 
fault creep imparts stress on the major locked zone at a rate of ~0.003 MPa/yr in addition to the 
background loading rates. They estimated that a slip-rate deficit equivalent to Mw 6.3-6.8 has 
accumulated on the fault, since the last event in 1868.   

Unlike the HF, there is no unanimous agreement within the literature regarding the rate and 
location of the shallow creep on the RCF. According to a recent study based on InSAR, GPS, and 
alignment array observations, the measured creep on the surface is ~2 mm/yr, varying along the 
Rodgers Creek Fault, while the estimated long-term rate of creep in the deep zone (depth more than 
10 km) is 11.6 ± 0.5 mm/yr [Xu et al., 2018]. On the other hand, using InSAR observation alone, 
Funning et al. [2007] estimated creep rates of 3-7 mm/yr for the shallow 6 km of the RCF. Moreover, 
the repeating earthquake observation, detected within the shallow 10 km of the RCF, suggest a creep 
rate of ~2 mm/yr in the central RCF, just north of Santa Rosa, and higher creep rate of ~4 mm/yr 
in the southern section of the RCF [Senobari and Funning, 2019]. The lack of repeating earthquakes on 
the part of RCF beneath the city of Santa Rosa towards the south, however, might be indicative of a 
locked asperity in this zone. The presence of such strong asperity is also suggested using Lidar-based 
generated high-resolution DEM as well as data set provided through gravity, aeromagnetic, and 
seismic-reflection surveys over RCF [Hecker et al., 2016].  

A. 

B. 
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3. Tools and Data 
For the past 25 years, InSAR measurements have provided tremendous excitement in the 

geodetic and hazards research communities because of their unparalleled spatial coverage and 
resolution. InSAR and GPS are complementary in that GPS provides long-term stability, vector 
displacements, and better temporal coverage as compared to the extensive spatial coverage provided 
by SAR. Because both GPS and InSAR involve the propagation of electromagnetic signals, they 
share related path delays through the electrically neutral lower atmosphere. Thus, results from one 
system are directly relevant to the others [Tong et al., 2014]. In our earlier studies, we developed 
InSAR time series algorithm to analyze InSAR and GPS data sets and measure surface deformation 
at unprecedented accuracy and resolution [Khoshmanesh et al., 2015; Miller and Shirzaei, 2015; Shirzaei, 
2013; 2015; Shirzaei and Bürgmann, 2013; Shirzaei et al., 2012; Shirzaei et al., 2013; Shirzaei et al., 2014; 
Shirzaei et al., 2015; Turner et al., 2015; Weston and Shirzaei, 2016].  

The multitemporal InSAR approaches, include methods using single-master interferometry (e.g., 
Permanent Scatterer [Ferretti et al., 2001; Hooper et al., 2007]) and methods implementing a multi-
master interferometry (e.g. Small Baseline Subset [Berardino et al., 2002], Wavelet-Based InSAR 
[Shirzaei, 2013], multiscale InSAR Time Series [Hetland et al., 2012] and Multitrack Wavelet-Based 
InSAR [Shirzaei, 2015]). One of the benefits of a time series approach is that it readily lends itself to 
temporal filtering, mitigating the effects of atmospheric noise, which is a significant error source in 
traditional InSAR. It can also more clearly delineate temporally variable components of the 
deformation field and improves the time-dependent deformation models. Here, we used a Wavelet 
Based InSAR (WabInSAR) algorithm to analyze SAR data sets and generate several high-resolution 
spatiotemporal maps of surface deformation along the HF-RCF system. The accuracy of the results 
is assessed by comparing them against independent observations such as GPS. Throughout this 
project we also analyzed, interpreted and integrated other data sets including, creepmeter, alinement 
array, geology and lithology, seismic velocities, and tomography.  

4. Models  

Here we applied a kinematic modeling scheme to solve for the spatial distribution of creep rate 
along the HF-RCF system. Starting with a simulated fault geometry using a mesh of triangular (or 

rectangular) dislocations, the relation between surface observation (𝐿 ) and fault creep (𝐶 ) is as 
follows; 

𝐿 + 𝑣 = 𝐵𝐶     ,    𝑃 = 𝜎0
2Σ𝑙 𝑙

−1  (1) 

where, 𝐵 is the design matrix, 𝑣  is observation residual and Σ𝑙 𝑙
−1  is observation variance-

covariance matrix. To integrate the CREs into the creep inversion, we consider the following 
constraint equation; 

               𝐶𝐶𝑅𝐸 + 𝜀 = 𝐶  ,    𝑃𝑐 = 𝜎0
2Σ𝑆 𝑆

−1  (2) 

where, 𝐶𝐶𝑅𝐸 is the creep obtained from the CREs, 𝜀  is the vector of residuals and Σ𝑆 𝑆
−1  is the 

variance-covariance matrix of CRE creep. System of Equations 1 and 2 can be solved using a least-
squares optimization technique, subject to some smoothing criteria [Shirzaei and Bürgmann, 2013]. 
Despite the advantages of gradient-based least squares optimization methods for solving various 
problems [Lawson and Hanson, 1974; Mikhail and Ackermann, 1982; Segall, 2010; Tarantola, 1987], they 
are less effective to account for the effect of various apriori information as well as observation and 
model errors. Hence to obtain a probabilistic estimate of the creep and full variance-covariance 
matrices, a Bayesian optimization framework is applied. Bayesian inversion is widely used for 
modeling volcanic and tectonic processes (e.g. [Anderson and Segall, 2013; Fukuda and Johnson, 2008; 
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Fukuda and Johnson, 2010; Jolivet et al., 2015; Minson et al., 2013; Minson et al., 2014; Murray et al., 2014; 
Rousset et al., 2016]). Bayesian inference is the process of analyzing statistical models with the 
incorporation of prior knowledge about the model or model parameters [Kaipio and Somersalo, 2006]. 
The root of such inference is Bayes' theorem:   
 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑒𝑡𝑟𝑠)

𝑃(𝑑𝑎𝑡𝑎)
𝛼 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑝𝑟𝑖𝑜𝑟 

  (3) 

Where P() is the probability function. Suppose we have normally distributed observations, 

X|θ~N(θ, σ2), where sigma is known and the prior distribution for theta is 𝜃~𝑁(𝜇, 𝜏2). Also, 𝜇 

and τ are known. If we observe n samples of X, we can obtain the posterior distribution for θ [Kaipio 
and Somersalo, 2006] as: 
 

θ|X~N(
τ2

σ2 2⁄ +τ2 X̅ +
σ2 2⁄

σ2 2⁄ +τ2 μ ,
(σ2 2⁄ )τ2

σ2 2⁄ +τ2 )    ,     X̅ =
1

n
∑ Xi

n
i=1  

  (4) 

Markov Chain Monte Carlo (MCMC) sampling was used to characterize the posterior probability 
distributions [Metropolis et al., 1953; Mosegaard and Tarantola, 1995].  
 
5. Results and conclusions 

Our SAR dataset includes ~200 images acquired by Sentinel-1A/B C-Band satellite in 
descending and ascending viewing geometries during 2014 and 2019. We also incorporate 120 
sequences of CREs with data from 5 creepmeters in our analysis. Figure 3 shows the obtained 
surface deformation velocity maps for each viewing geometries. 
 

 
Figure 3. Long-term LOS deformation rates during 2014-2019: (a) Ascending rates along RCF, (b) 
Descending rates along RCF, (c) Ascending rates along HF, and (d) Descending rates along HF, 
(Khoshmanesh et al. 2020, in prep). 
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Availability of the LOS velocities in ascending and descending viewing geometry allows solving for 
the vertical and east-west displacement components, assuming that the contribution from the north 
component is negligible due to polar-orbiting SAR satellites. Figure 4 shows the spatial distribution 
of the obtained vertical deformation rate. The majority of the observed vertical land motion is 
attributed to hydrological processes and sediment compaction. Using this vertical rate, we correct 
the LOS velocity obtained in descending viewing geometry. 

 
Figure 4. Long-term vertical land deformation rate during 2014-2019 
 
Figure 5a shows the LOS velocity field in descending orbit geometry corrected for vertical motions 
alongside the GPS velocities. The rectangles denote the location of the GPS stations, which are 
color-coded based on the GPS 2D velocities projected into the LOS direction. The black arrows 
show the horizontal velocity of the GPS stations. Visual comparison of the InSAR LOS velocity and 
projected GPS velocities shows a good agreement between these two independent datasets. The 
difference between the GPS and InSAR LOS velocity has an average of -0.3 mm/yr and a standard 
deviation of ~2 mm/yr (inset in Figure 5a). The trace of the HF and RCF roughly defines the 
boundary between the red and blue areas in Figure 5a, which correspond to the movement toward 
and away from the satellite, respectively. The LOS velocities along Two profiles across the HF and 
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RCF are shown in Figure 5b. The corresponding amount of surface deformation measured by the 
GPS stations (red dots), with errorbars showing 1 mm/yr uncertainty, are also shown alongside the 
InSAR observations further to validate the implemented method for InSAR data processing. As 
seen, there is a good agreement between InSAR and GPS observations within the study area. 

 
Figure 5. Long-term horizontal deformation rate during 2014-2019: (a) Descending InSAR 
observations along both HF and RCF after removing the contributions from vertical land motion, 
along with the GPS horizontal rates, and (b) GPS (red) versus InSAR (gray) along the two profiles 
perpendicular to the fault trace shown in (a). 
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Applying the inversion scheme detailed above to the LOS deformation rate shown in Figure 5a, 
we solve for the spatiotemporal distribution of the creep along the HF-RCF system. Figure 6 shows 
the 3D perspective of the obtained HF-RCF creep rate. The model along HF is characterized by a 
deep creeping patch at a rate of 9 mm/yr near its south, a central locked patch, and a shallow 
creeping zone at a rate of 6 mm/yr near its north. Along the RCF, the majority of fast creeping 
zones are deep below 5 km. The only shallow creeping zone is located north of sears point, which 
creeps at a rate of ~6 mm/y. we further overlay the extent of the HF central locked zone that is 
obtained by Shirzaei and Bürgmann [2013]. Interestingly, we find that the area of the locked patch 
obtained here is slightly larger than that of the earlier study. Further works need to be done to 
investigate whether this difference is statistically significant. Additionally, we estimated that HF alone 
accumulates a seismic moment (Mw) of 5.2 – 5.5 each year. This estimate for RCF is 5.0 – 5.4, while 
the combined system accumulates seismic moment at the rate of 5.4 – 5.7 per year. 

 

 
Figure 6. Long-term creep rate during 2014-2019 on HF and RCF: diamonds show the creepmeter 
stations, solid circles show the detected CRE sequences, and magenta dots show the 
microseismicity. Solid and dashed white contour denote the limit of the locked asperity on HF 
obtained in this study and that in Shirzaei and Burgmann (2013, JGR), respectively, showing that the 
locked area has grown in size. 
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